меню

Решение треугольника c катетом 2500 и углом 14 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2500
b=2500
c=2576.5
76°
14°
S=779069.2
P=7576.5
r=1211.8
R=1288.3
h=604.75
mc=1288.3

Гипотенуза:
c =
a
cos(β°)
=
2500
cos(14°)
=
2500
0.9703
= 2576.5

Угол:
α° = 90°-β°
= 90°-14°
= 76°

Высота:
h = a·sin(β°)
= 2500·sin(14°)
= 2500·0.2419
= 604.75

Катет:
b = h·
c
a
= 604.75·
2576.5
2500
= 623.26
или:
b =  c2 - a2
=  2576.52 - 25002
=  6638352 - 6250000
=  388352.3
= 623.18
или:
b = c·sin(β°)
= 2576.5·sin(14°)
= 2576.5·0.2419
= 623.26
или:
b = c·cos(α°)
= 2576.5·cos(76°)
= 2576.5·0.2419
= 623.26
или:
b =
h
sin(α°)
=
604.75
sin(76°)
=
604.75
0.9703
= 623.26
или:
b =
h
cos(β°)
=
604.75
cos(14°)
=
604.75
0.9703
= 623.26
или:
b =  
c2 +  c4- 4c2h2
2
=  
2576.52 +  2576.54- 4·2576.52·604.752
2
=  
6638352 +  44067717275904- 4·6638352·365722.6
2
=  
6638352 +  34356535863283
2
= 2500

Площадь:
S =
h·c
2
=
604.75·2576.5
2
= 779069.2

Радиус описанной окружности:
R =
c
2
=
2576.5
2
= 1288.3

Медиана:
Mc =
c
2
=
2576.5
2
= 1288.3

Радиус вписанной окружности:
r =
a+b-c
2
=
2500+2500-2576.5
2
= 1211.8

Периметр:
P = a+b+c
= 2500+2500+2576.5
= 7576.5
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: