Решение треугольника c катетом 120 и углом 10 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=21.15
b=120
c=121.85
10°
80°
S=1269.1
P=263
r=9.65
R=60.93
h=20.83
mc=60.93
Гипотенуза:
c =
b
cos(α°)
=
120
cos(10°)
=
120
0.9848
= 121.85
Угол:
β° = 90°-α°
= 90°-10°
= 80°
Высота:
h = b·sin(α°)
= 120·sin(10°)
= 120·0.1736
= 20.83
Катет:
a = h·
c
b
= 20.83·
121.85
120
= 21.15
или:
a = c2 - b2
= 121.852 - 1202
= 14847.4 - 14400
= 447.42
= 21.15
или:
a = c·sin(α°)
= 121.85·sin(10°)
= 121.85·0.1736
= 21.15
или:
a = c·cos(β°)
= 121.85·cos(80°)
= 121.85·0.1736
= 21.15
или:
a =
h
cos(α°)
=
20.83
cos(10°)
=
20.83
0.9848
= 21.15
или:
a =
h
sin(β°)
=
20.83
sin(80°)
=
20.83
0.9848
= 21.15
или:
a =
c2 - c4- 4c2h2
2
=
121.852 - 121.854- 4·121.852·20.832
2
=
14847.4 - 220445287- 4·14847.4·433.89
2
=
14847.4 - 194676733
2
= 21.15
Площадь:
S =
h·c
2
=
20.83·121.85
2
= 1269.1
Радиус описанной окружности:
R =
c
2
=
121.85
2
= 60.93
Медиана:
Mc =
c
2
=
121.85
2
= 60.93
Радиус вписанной окружности:
r =
a+b-c
2
=
21.15+120-121.85
2
= 9.65
Периметр:
P = a+b+c
= 21.15+120+121.85
= 263
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: