Решение треугольника c катетом 2.1 и углом 20 и углом 70 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.7645
b=2.1
c=2.235
20°
70°
S=0.8026
P=5.1
r=0.3148
R=1.118
h=0.7182
mc=1.118
Гипотенуза:
c =
b
sin(β°)
=
2.1
sin(70°)
=
2.1
0.9397
= 2.235
или:
c =
b
cos(α°)
=
2.1
cos(20°)
=
2.1
0.9397
= 2.235
Высота:
h = b·sin(α°)
= 2.1·sin(20°)
= 2.1·0.342
= 0.7182
или:
h = b·cos(β°)
= 2.1·cos(70°)
= 2.1·0.342
= 0.7182
Катет:
a = h·
c
b
= 0.7182·
2.235
2.1
= 0.7644
или:
a = c2 - b2
= 2.2352 - 2.12
= 4.995 - 4.41
= 0.5852
= 0.765
или:
a = c·sin(α°)
= 2.235·sin(20°)
= 2.235·0.342
= 0.7644
или:
a = c·cos(β°)
= 2.235·cos(70°)
= 2.235·0.342
= 0.7644
или:
a =
h
cos(α°)
=
0.7182
cos(20°)
=
0.7182
0.9397
= 0.7643
или:
a =
h
sin(β°)
=
0.7182
sin(70°)
=
0.7182
0.9397
= 0.7643
или:
a =
c2 - c4- 4c2h2
2
=
2.2352 - 2.2354- 4·2.2352·0.71822
2
=
4.995 - 24.95- 4·4.995·0.5158
2
=
4.995 - 14.64
2
= 0.7645
Площадь:
S =
h·c
2
=
0.7182·2.235
2
= 0.8026
Радиус описанной окружности:
R =
c
2
=
2.235
2
= 1.118
Медиана:
Mc =
c
2
=
2.235
2
= 1.118
Радиус вписанной окружности:
r =
a+b-c
2
=
0.7645+2.1-2.235
2
= 0.3148
Периметр:
P = a+b+c
= 0.7645+2.1+2.235
= 5.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: