меню

Решение треугольника c катетом 15 и углом 26.6 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=7.513
b=15
c=16.77
26.6°
63.4°
S=56.32
P=39.28
r=2.872
R=8.385
h=6.717
mc=8.385

Гипотенуза:
c =
b
cos(α°)
=
15
cos(26.6°)
=
15
0.8942
= 16.77

Угол:
β° = 90°-α°
= 90°-26.6°
= 63.4°

Высота:
h = b·sin(α°)
= 15·sin(26.6°)
= 15·0.4478
= 6.717

Катет:
a = h·
c
b
= 6.717·
16.77
15
= 7.51
или:
a =  c2 - b2
=  16.772 - 152
=  281.23 - 225
=  56.23
= 7.499
или:
a = c·sin(α°)
= 16.77·sin(26.6°)
= 16.77·0.4478
= 7.51
или:
a = c·cos(β°)
= 16.77·cos(63.4°)
= 16.77·0.4478
= 7.51
или:
a =
h
cos(α°)
=
6.717
cos(26.6°)
=
6.717
0.8942
= 7.512
или:
a =
h
sin(β°)
=
6.717
sin(63.4°)
=
6.717
0.8942
= 7.512
или:
a =  
c2 -  c4- 4c2h2
2
=  
16.772 -  16.774- 4·16.772·6.7172
2
=  
281.23 -  79090.3- 4·281.23·45.12
2
=  
281.23 -  28333.9
2
= 7.513

Площадь:
S =
h·c
2
=
6.717·16.77
2
= 56.32

Радиус описанной окружности:
R =
c
2
=
16.77
2
= 8.385

Медиана:
Mc =
c
2
=
16.77
2
= 8.385

Радиус вписанной окружности:
r =
a+b-c
2
=
7.513+15-16.77
2
= 2.872

Периметр:
P = a+b+c
= 7.513+15+16.77
= 39.28
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: