Решение треугольника c катетом 195 и углом 30 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=112.58
b=195
c=225.17
30°
60°
S=10977
P=532.75
r=41.21
R=112.59
h=97.5
mc=112.59
Гипотенуза:
c =
b
cos(α°)
=
195
cos(30°)
=
195
0.866
= 225.17
Угол:
β° = 90°-α°
= 90°-30°
= 60°
Высота:
h = b·sin(α°)
= 195·sin(30°)
= 195·0.5
= 97.5
Катет:
a = h·
c
b
= 97.5·
225.17
195
= 112.59
или:
a = c2 - b2
= 225.172 - 1952
= 50701.5 - 38025
= 12676.5
= 112.59
или:
a = c·sin(α°)
= 225.17·sin(30°)
= 225.17·0.5
= 112.59
или:
a = c·cos(β°)
= 225.17·cos(60°)
= 225.17·0.5
= 112.59
или:
a =
h
cos(α°)
=
97.5
cos(30°)
=
97.5
0.866
= 112.59
или:
a =
h
sin(β°)
=
97.5
sin(60°)
=
97.5
0.866
= 112.59
или:
a =
c2 - c4- 4c2h2
2
=
225.172 - 225.174- 4·225.172·97.52
2
=
50701.5 - 2570642102- 4·50701.5·9506.3
2
=
50701.5 - 642707424
2
= 112.58
Площадь:
S =
h·c
2
=
97.5·225.17
2
= 10977
Радиус описанной окружности:
R =
c
2
=
225.17
2
= 112.59
Медиана:
Mc =
c
2
=
225.17
2
= 112.59
Радиус вписанной окружности:
r =
a+b-c
2
=
112.58+195-225.17
2
= 41.21
Периметр:
P = a+b+c
= 112.58+195+225.17
= 532.75
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: