меню

Решение треугольника c катетом 323 и углом 17 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=98.77
b=323
c=337.76
17°
73°
S=15950.7
P=759.53
r=42.01
R=168.88
h=94.45
mc=168.88

Гипотенуза:
c =
b
cos(α°)
=
323
cos(17°)
=
323
0.9563
= 337.76

Угол:
β° = 90°-α°
= 90°-17°
= 73°

Высота:
h = b·sin(α°)
= 323·sin(17°)
= 323·0.2924
= 94.45

Катет:
a = h·
c
b
= 94.45·
337.76
323
= 98.77
или:
a =  c2 - b2
=  337.762 - 3232
=  114081.8 - 104329
=  9752.8
= 98.76
или:
a = c·sin(α°)
= 337.76·sin(17°)
= 337.76·0.2924
= 98.76
или:
a = c·cos(β°)
= 337.76·cos(73°)
= 337.76·0.2924
= 98.76
или:
a =
h
cos(α°)
=
94.45
cos(17°)
=
94.45
0.9563
= 98.77
или:
a =
h
sin(β°)
=
94.45
sin(73°)
=
94.45
0.9563
= 98.77
или:
a =  
c2 -  c4- 4c2h2
2
=  
337.762 -  337.764- 4·337.762·94.452
2
=  
114081.8 -  13014657091- 4·114081.8·8920.8
2
=  
114081.8 -  8943853405
2
= 98.77

Площадь:
S =
h·c
2
=
94.45·337.76
2
= 15950.7

Радиус описанной окружности:
R =
c
2
=
337.76
2
= 168.88

Медиана:
Mc =
c
2
=
337.76
2
= 168.88

Радиус вписанной окружности:
r =
a+b-c
2
=
98.77+323-337.76
2
= 42.01

Периметр:
P = a+b+c
= 98.77+323+337.76
= 759.53
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: