меню

Решение треугольника c катетом 7 и гипотенузой 17 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=7
b=12.02
c=17
45°
45°
S=42.08
P=36.02
r=1.01
R=8.5
h=4.95
mc=8.5

Катет:
b =  c2 - a2
=  172 - 72
=  289 - 49
=  240
= 15.49
или:
b = c·cos(α°)
= 17·cos(45°)
= 17·0.7071
= 12.02

Угол:
β° = 90°-α°
= 90°-45°
= 45°

Высота:
h = a·cos(α°)
= 7·cos(45°)
= 7·0.7071
= 4.95

Радиус описанной окружности:
R =
c
2
=
17
2
= 8.5

Медиана:
Mc =
c
2
=
17
2
= 8.5

Площадь:
S =
ab
2
=
7·12.02
2
= 42.07
или:
S =
h·c
2
=
4.95·17
2
= 42.08

Радиус вписанной окружности:
r =
a+b-c
2
=
7+12.02-17
2
= 1.01

Периметр:
P = a+b+c
= 7+12.02+17
= 36.02
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: