меню

Решение треугольника c катетом 47 и углом 30 и углом 60 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=27.14
b=47
c=54.27
30°
60°
S=637.67
P=128.41
r=9.935
R=27.14
h=23.5
mc=27.14

Гипотенуза:
c =
b
sin(β°)
=
47
sin(60°)
=
47
0.866
= 54.27
или:
c =
b
cos(α°)
=
47
cos(30°)
=
47
0.866
= 54.27

Высота:
h = b·sin(α°)
= 47·sin(30°)
= 47·0.5
= 23.5
или:
h = b·cos(β°)
= 47·cos(60°)
= 47·0.5
= 23.5

Катет:
a = h·
c
b
= 23.5·
54.27
47
= 27.14
или:
a =  c2 - b2
=  54.272 - 472
=  2945.2 - 2209
=  736.23
= 27.13
или:
a = c·sin(α°)
= 54.27·sin(30°)
= 54.27·0.5
= 27.14
или:
a = c·cos(β°)
= 54.27·cos(60°)
= 54.27·0.5
= 27.14
или:
a =
h
cos(α°)
=
23.5
cos(30°)
=
23.5
0.866
= 27.14
или:
a =
h
sin(β°)
=
23.5
sin(60°)
=
23.5
0.866
= 27.14
или:
a =  
c2 -  c4- 4c2h2
2
=  
54.272 -  54.274- 4·54.272·23.52
2
=  
2945.2 -  8674203- 4·2945.2·552.25
2
=  
2945.2 -  2168256
2
= 27.14

Площадь:
S =
h·c
2
=
23.5·54.27
2
= 637.67

Радиус описанной окружности:
R =
c
2
=
54.27
2
= 27.14

Медиана:
Mc =
c
2
=
54.27
2
= 27.14

Радиус вписанной окружности:
r =
a+b-c
2
=
27.14+47-54.27
2
= 9.935

Периметр:
P = a+b+c
= 27.14+47+54.27
= 128.41
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: