меню

Решение треугольника c катетом 298 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=297.89
b=298
c=421.44
45°
45°
S=44402.9
P=1017.3
r=87.23
R=210.72
h=210.72
mc=210.72

Гипотенуза:
c =
b
cos(α°)
=
298
cos(45°)
=
298
0.7071
= 421.44

Угол:
β° = 90°-α°
= 90°-45°
= 45°

Высота:
h = b·sin(α°)
= 298·sin(45°)
= 298·0.7071
= 210.72

Катет:
a = h·
c
b
= 210.72·
421.44
298
= 298.01
или:
a =  c2 - b2
=  421.442 - 2982
=  177611.7 - 88804
=  88807.7
= 298.01
или:
a = c·sin(α°)
= 421.44·sin(45°)
= 421.44·0.7071
= 298
или:
a = c·cos(β°)
= 421.44·cos(45°)
= 421.44·0.7071
= 298
или:
a =
h
cos(α°)
=
210.72
cos(45°)
=
210.72
0.7071
= 298.01
или:
a =
h
sin(β°)
=
210.72
sin(45°)
=
210.72
0.7071
= 298.01
или:
a =  
c2 -  c4- 4c2h2
2
=  
421.442 -  421.444- 4·421.442·210.722
2
=  
177611.7 -  31545915977- 4·177611.7·44402.9
2
=  
177611.7 -  17761.3
2
= 297.89

Площадь:
S =
h·c
2
=
210.72·421.44
2
= 44402.9

Радиус описанной окружности:
R =
c
2
=
421.44
2
= 210.72

Медиана:
Mc =
c
2
=
421.44
2
= 210.72

Радиус вписанной окружности:
r =
a+b-c
2
=
297.89+298-421.44
2
= 87.23

Периметр:
P = a+b+c
= 297.89+298+421.44
= 1017.3
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: