меню

Решение треугольника c катетом 153 и углом 18,2 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=50.3
b=153
c=161.05
18.2°
71.8°
S=3847.5
P=364.35
r=21.13
R=80.53
h=47.78
mc=80.53

Гипотенуза:
c =
b
cos(α°)
=
153
cos(18.2°)
=
153
0.95
= 161.05

Угол:
β° = 90°-α°
= 90°-18.2°
= 71.8°

Высота:
h = b·sin(α°)
= 153·sin(18.2°)
= 153·0.3123
= 47.78

Катет:
a = h·
c
b
= 47.78·
161.05
153
= 50.29
или:
a =  c2 - b2
=  161.052 - 1532
=  25937.1 - 23409
=  2528.1
= 50.28
или:
a = c·sin(α°)
= 161.05·sin(18.2°)
= 161.05·0.3123
= 50.3
или:
a = c·cos(β°)
= 161.05·cos(71.8°)
= 161.05·0.3123
= 50.3
или:
a =
h
cos(α°)
=
47.78
cos(18.2°)
=
47.78
0.95
= 50.29
или:
a =
h
sin(β°)
=
47.78
sin(71.8°)
=
47.78
0.95
= 50.29
или:
a =  
c2 -  c4- 4c2h2
2
=  
161.052 -  161.054- 4·161.052·47.782
2
=  
25937.1 -  672733156- 4·25937.1·2282.9
2
=  
25937.1 -  435885934
2
= 50.3

Площадь:
S =
h·c
2
=
47.78·161.05
2
= 3847.5

Радиус описанной окружности:
R =
c
2
=
161.05
2
= 80.53

Медиана:
Mc =
c
2
=
161.05
2
= 80.53

Радиус вписанной окружности:
r =
a+b-c
2
=
50.3+153-161.05
2
= 21.13

Периметр:
P = a+b+c
= 50.3+153+161.05
= 364.35
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: