меню

Решение треугольника c катетом 0.2 и углом 120 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.2
b=0.3464
c=-0.4
-30°
120°
S=-0.03464
P=0.1464
r=0.4732
R=-0.2
h=0.1732
mc=-0.2

Гипотенуза:
c =
a
cos(β°)
=
0.2
cos(120°)
=
0.2
-0.5
= -0.4

Угол:
α° = 90°-β°
= 90°-120°
= -30°

Высота:
h = a·sin(β°)
= 0.2·sin(120°)
= 0.2·0.866
= 0.1732

Катет:
b = h·
c
a
= 0.1732·
-0.4
0.2
= -0.3464
или:
b =  c2 - a2
=  -0.42 - 0.22
=  0.16 - 0.04
=  0.12
= 0.3464
или:
b = c·sin(β°)
= -0.4·sin(120°)
= -0.4·0.866
= -0.3464
или:
b = c·cos(α°)
= -0.4·cos(-30°)
= -0.4·0.866
= -0.3464
или:
b =
h
sin(α°)
=
0.1732
sin(-30°)
=
0.1732
-0.5
= -0.3464
или:
b =
h
cos(β°)
=
0.1732
cos(120°)
=
0.1732
-0.5
= -0.3464
или:
b =  
c2 +  c4- 4c2h2
2
=  
-0.42 +  -0.44- 4·-0.42·0.17322
2
=  
0.16 +  0.0256- 4·0.16·0.03
2
=  
0.16 +  0.0064
2
= 0.3464

Площадь:
S =
h·c
2
=
0.1732·-0.4
2
= -0.03464

Радиус описанной окружности:
R =
c
2
=
-0.4
2
= -0.2

Медиана:
Mc =
c
2
=
-0.4
2
= -0.2

Радиус вписанной окружности:
r =
a+b-c
2
=
0.2+0.3464--0.4
2
= 0.4732

Периметр:
P = a+b+c
= 0.2+0.3464+-0.4
= 0.1464
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: