Решение треугольника c катетом 0.2 и углом 135 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.1983
b=0.2
c=-0.2828
135°
-45°
S=-0.01999
P=0.1155
r=0.3406
R=-0.1414
h=0.1414
mc=-0.1414
Гипотенуза:
c =
b
cos(α°)
=
0.2
cos(135°)
=
0.2
-0.7071
= -0.2828
Угол:
β° = 90°-α°
= 90°-135°
= -45°
Высота:
h = b·sin(α°)
= 0.2·sin(135°)
= 0.2·0.7071
= 0.1414
Катет:
a = h·
c
b
= 0.1414·
-0.2828
0.2
= -0.1999
или:
a = c2 - b2
= -0.28282 - 0.22
= 0.07998 - 0.04
= 0.03998
= 0.1999
или:
a = c·sin(α°)
= -0.2828·sin(135°)
= -0.2828·0.7071
= -0.2
или:
a = c·cos(β°)
= -0.2828·cos(-45°)
= -0.2828·0.7071
= -0.2
или:
a =
h
cos(α°)
=
0.1414
cos(135°)
=
0.1414
-0.7071
= -0.2
или:
a =
h
sin(β°)
=
0.1414
sin(-45°)
=
0.1414
-0.7071
= -0.2
или:
a =
c2 - c4- 4c2h2
2
=
-0.28282 - -0.28284- 4·-0.28282·0.14142
2
=
0.07998 - 0.006397- 4·0.07998·0.01999
2
=
0.07998 - 1.799E-6
2
= 0.1983
Площадь:
S =
h·c
2
=
0.1414·-0.2828
2
= -0.01999
Радиус описанной окружности:
R =
c
2
=
-0.2828
2
= -0.1414
Медиана:
Mc =
c
2
=
-0.2828
2
= -0.1414
Радиус вписанной окружности:
r =
a+b-c
2
=
0.1983+0.2--0.2828
2
= 0.3406
Периметр:
P = a+b+c
= 0.1983+0.2+-0.2828
= 0.1155
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: