Решение треугольника c катетом 33 и углом 20 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=33
b=90.67
c=96.49
20°
70°
S=1496.1
P=220.16
r=13.59
R=48.25
h=31.01
mc=48.25
Гипотенуза:
c =
a
sin(α°)
=
33
sin(20°)
=
33
0.342
= 96.49
Угол:
β° = 90°-α°
= 90°-20°
= 70°
Высота:
h = a·cos(α°)
= 33·cos(20°)
= 33·0.9397
= 31.01
Катет:
b = h·
c
a
= 31.01·
96.49
33
= 90.67
или:
b = c2 - a2
= 96.492 - 332
= 9310.3 - 1089
= 8221.3
= 90.67
или:
b = c·sin(β°)
= 96.49·sin(70°)
= 96.49·0.9397
= 90.67
или:
b = c·cos(α°)
= 96.49·cos(20°)
= 96.49·0.9397
= 90.67
или:
b =
h
sin(α°)
=
31.01
sin(20°)
=
31.01
0.342
= 90.67
или:
b =
h
cos(β°)
=
31.01
cos(70°)
=
31.01
0.342
= 90.67
или:
b =
c2 + c4- 4c2h2
2
=
96.492 + 96.494- 4·96.492·31.012
2
=
9310.3 + 86681686- 4·9310.3·961.62
2
=
9310.3 + 50869803
2
= 90.67
Площадь:
S =
h·c
2
=
31.01·96.49
2
= 1496.1
Радиус описанной окружности:
R =
c
2
=
96.49
2
= 48.25
Медиана:
Mc =
c
2
=
96.49
2
= 48.25
Радиус вписанной окружности:
r =
a+b-c
2
=
33+90.67-96.49
2
= 13.59
Периметр:
P = a+b+c
= 33+90.67+96.49
= 220.16
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: