Решение треугольника c катетом 33 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=33
b=90.67
c=96.49
20°
70°
S=1496.1
P=220.16
r=13.59
R=48.25
h=31.01
mc=48.25

Гипотенуза:
c =
a
sin(α°)
=
33
sin(20°)
=
33
0.342
= 96.49

Угол:
β° = 90°-α°
= 90°-20°
= 70°

Высота:
h = a·cos(α°)
= 33·cos(20°)
= 33·0.9397
= 31.01

Катет:
b = h·
c
a
= 31.01·
96.49
33
= 90.67
или:
b =  c2 - a2
=  96.492 - 332
=  9310.3 - 1089
=  8221.3
= 90.67
или:
b = c·sin(β°)
= 96.49·sin(70°)
= 96.49·0.9397
= 90.67
или:
b = c·cos(α°)
= 96.49·cos(20°)
= 96.49·0.9397
= 90.67
или:
b =
h
sin(α°)
=
31.01
sin(20°)
=
31.01
0.342
= 90.67
или:
b =
h
cos(β°)
=
31.01
cos(70°)
=
31.01
0.342
= 90.67
или:
b =  
c2 +  c4- 4c2h2
2
=  
96.492 +  96.494- 4·96.492·31.012
2
=  
9310.3 +  86681686- 4·9310.3·961.62
2
=  
9310.3 +  50869803
2
= 90.67

Площадь:
S =
h·c
2
=
31.01·96.49
2
= 1496.1

Радиус описанной окружности:
R =
c
2
=
96.49
2
= 48.25

Медиана:
Mc =
c
2
=
96.49
2
= 48.25

Радиус вписанной окружности:
r =
a+b-c
2
=
33+90.67-96.49
2
= 13.59

Периметр:
P = a+b+c
= 33+90.67+96.49
= 220.16
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.