Решение треугольника c катетом 400 и углом 35 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=280.12
b=400
c=488.28
35°
55°
S=56015.5
P=1168.4
r=95.92
R=244.14
h=229.44
mc=244.14
Гипотенуза:
c =
b
cos(α°)
=
400
cos(35°)
=
400
0.8192
= 488.28
Угол:
β° = 90°-α°
= 90°-35°
= 55°
Высота:
h = b·sin(α°)
= 400·sin(35°)
= 400·0.5736
= 229.44
Катет:
a = h·
c
b
= 229.44·
488.28
400
= 280.08
или:
a = c2 - b2
= 488.282 - 4002
= 238417.4 - 160000
= 78417.4
= 280.03
или:
a = c·sin(α°)
= 488.28·sin(35°)
= 488.28·0.5736
= 280.08
или:
a = c·cos(β°)
= 488.28·cos(55°)
= 488.28·0.5736
= 280.08
или:
a =
h
cos(α°)
=
229.44
cos(35°)
=
229.44
0.8192
= 280.08
или:
a =
h
sin(β°)
=
229.44
sin(55°)
=
229.44
0.8192
= 280.08
или:
a =
c2 - c4- 4c2h2
2
=
488.282 - 488.284- 4·488.282·229.442
2
=
238417.4 - 56842856623- 4·238417.4·52642.7
2
=
238417.4 - 6639113971
2
= 280.12
Площадь:
S =
h·c
2
=
229.44·488.28
2
= 56015.5
Радиус описанной окружности:
R =
c
2
=
488.28
2
= 244.14
Медиана:
Mc =
c
2
=
488.28
2
= 244.14
Радиус вписанной окружности:
r =
a+b-c
2
=
280.12+400-488.28
2
= 95.92
Периметр:
P = a+b+c
= 280.12+400+488.28
= 1168.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: