меню

Решение треугольника c катетом 180 и катетом 350 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=180
b=350
c=393.57
27.2°
62.8°
S=31500
P=923.57
r=68.22
R=196.79
h=160.07
mc=196.79

Гипотенуза:
c =  a2 + b2
=  1802 + 3502
=  32400 + 122500
=  154900
= 393.57

Площадь:
S =
ab
2
=
180·350
2
= 31500

Угол:
α° = arcsin
a
c
= arcsin
180
393.57
= 27.2°

Угол:
β° = arcsin
b
c
= arcsin
350
393.57
= 62.8°

Высота:
h =
ab
c
=
180·350
393.57
= 160.07
или:
h =
2S
c
=
2 · 31500
393.57
= 160.07

Радиус вписанной окружности:
r =
a+b-c
2
=
180+350-393.57
2
= 68.22

Радиус описанной окружности:
R =
c
2
=
393.57
2
= 196.79

Периметр:
P = a+b+c
= 180+350+393.57
= 923.57

Медиана:
Mc =
c
2
=
393.57
2
= 196.79
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: