Решение треугольника c катетом 4,04 и углом 3 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.2117
b=4.04
c=4.046
3°
87°
S=0.4279
P=8.298
r=0.1029
R=2.023
h=0.2115
mc=2.023
Гипотенуза:
c =
b
cos(α°)
=
4.04
cos(3°)
=
4.04
0.9986
= 4.046
Угол:
β° = 90°-α°
= 90°-3°
= 87°
Высота:
h = b·sin(α°)
= 4.04·sin(3°)
= 4.04·0.05234
= 0.2115
Катет:
a = h·
c
b
= 0.2115·
4.046
4.04
= 0.2118
или:
a = c2 - b2
= 4.0462 - 4.042
= 16.37 - 16.32
= 0.04852
= 0.2203
или:
a = c·sin(α°)
= 4.046·sin(3°)
= 4.046·0.05234
= 0.2118
или:
a = c·cos(β°)
= 4.046·cos(87°)
= 4.046·0.05234
= 0.2118
или:
a =
h
cos(α°)
=
0.2115
cos(3°)
=
0.2115
0.9986
= 0.2118
или:
a =
h
sin(β°)
=
0.2115
sin(87°)
=
0.2115
0.9986
= 0.2118
или:
a =
c2 - c4- 4c2h2
2
=
4.0462 - 4.0464- 4·4.0462·0.21152
2
=
16.37 - 267.98- 4·16.37·0.04473
2
=
16.37 - 265.05
2
= 0.2117
Площадь:
S =
h·c
2
=
0.2115·4.046
2
= 0.4279
Радиус описанной окружности:
R =
c
2
=
4.046
2
= 2.023
Медиана:
Mc =
c
2
=
4.046
2
= 2.023
Радиус вписанной окружности:
r =
a+b-c
2
=
0.2117+4.04-4.046
2
= 0.1029
Периметр:
P = a+b+c
= 0.2117+4.04+4.046
= 8.298
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: