Решение треугольника c катетом 4.5 и углом 32 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.812
b=4.5
c=5.307
32°
58°
S=6.329
P=12.62
r=1.003
R=2.654
h=2.385
mc=2.654
Гипотенуза:
c =
b
cos(α°)
=
4.5
cos(32°)
=
4.5
0.848
= 5.307
Угол:
β° = 90°-α°
= 90°-32°
= 58°
Высота:
h = b·sin(α°)
= 4.5·sin(32°)
= 4.5·0.5299
= 2.385
Катет:
a = h·
c
b
= 2.385·
5.307
4.5
= 2.813
или:
a = c2 - b2
= 5.3072 - 4.52
= 28.16 - 20.25
= 7.914
= 2.813
или:
a = c·sin(α°)
= 5.307·sin(32°)
= 5.307·0.5299
= 2.812
или:
a = c·cos(β°)
= 5.307·cos(58°)
= 5.307·0.5299
= 2.812
или:
a =
h
cos(α°)
=
2.385
cos(32°)
=
2.385
0.848
= 2.813
или:
a =
h
sin(β°)
=
2.385
sin(58°)
=
2.385
0.848
= 2.813
или:
a =
c2 - c4- 4c2h2
2
=
5.3072 - 5.3074- 4·5.3072·2.3852
2
=
28.16 - 792.99- 4·28.16·5.688
2
=
28.16 - 152.29
2
= 2.812
Площадь:
S =
h·c
2
=
2.385·5.307
2
= 6.329
Радиус описанной окружности:
R =
c
2
=
5.307
2
= 2.654
Медиана:
Mc =
c
2
=
5.307
2
= 2.654
Радиус вписанной окружности:
r =
a+b-c
2
=
2.812+4.5-5.307
2
= 1.003
Периметр:
P = a+b+c
= 2.812+4.5+5.307
= 12.62
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: