Решение треугольника c катетом 9.2 и углом 15 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.465
b=9.2
c=9.525
15°
75°
S=11.34
P=21.19
r=1.07
R=4.763
h=2.381
mc=4.763
Гипотенуза:
c =
b
cos(α°)
=
9.2
cos(15°)
=
9.2
0.9659
= 9.525
Угол:
β° = 90°-α°
= 90°-15°
= 75°
Высота:
h = b·sin(α°)
= 9.2·sin(15°)
= 9.2·0.2588
= 2.381
Катет:
a = h·
c
b
= 2.381·
9.525
9.2
= 2.465
или:
a = c2 - b2
= 9.5252 - 9.22
= 90.73 - 84.64
= 6.086
= 2.467
или:
a = c·sin(α°)
= 9.525·sin(15°)
= 9.525·0.2588
= 2.465
или:
a = c·cos(β°)
= 9.525·cos(75°)
= 9.525·0.2588
= 2.465
или:
a =
h
cos(α°)
=
2.381
cos(15°)
=
2.381
0.9659
= 2.465
или:
a =
h
sin(β°)
=
2.381
sin(75°)
=
2.381
0.9659
= 2.465
или:
a =
c2 - c4- 4c2h2
2
=
9.5252 - 9.5254- 4·9.5252·2.3812
2
=
90.73 - 8231.9- 4·90.73·5.669
2
=
90.73 - 6174.5
2
= 2.465
Площадь:
S =
h·c
2
=
2.381·9.525
2
= 11.34
Радиус описанной окружности:
R =
c
2
=
9.525
2
= 4.763
Медиана:
Mc =
c
2
=
9.525
2
= 4.763
Радиус вписанной окружности:
r =
a+b-c
2
=
2.465+9.2-9.525
2
= 1.07
Периметр:
P = a+b+c
= 2.465+9.2+9.525
= 21.19
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: