меню

Решение треугольника c катетом 7 и углом 5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.6123
b=7
c=7.027
85°
S=2.144
P=14.64
r=0.2927
R=3.514
h=0.6101
mc=3.514

Гипотенуза:
c =
b
cos(α°)
=
7
cos(5°)
=
7
0.9962
= 7.027

Угол:
β° = 90°-α°
= 90°-5°
= 85°

Высота:
h = b·sin(α°)
= 7·sin(5°)
= 7·0.08716
= 0.6101

Катет:
a = h·
c
b
= 0.6101·
7.027
7
= 0.6125
или:
a =  c2 - b2
=  7.0272 - 72
=  49.38 - 49
=  0.3787
= 0.6154
или:
a = c·sin(α°)
= 7.027·sin(5°)
= 7.027·0.08716
= 0.6125
или:
a = c·cos(β°)
= 7.027·cos(85°)
= 7.027·0.08716
= 0.6125
или:
a =
h
cos(α°)
=
0.6101
cos(5°)
=
0.6101
0.9962
= 0.6124
или:
a =
h
sin(β°)
=
0.6101
sin(85°)
=
0.6101
0.9962
= 0.6124
или:
a =  
c2 -  c4- 4c2h2
2
=  
7.0272 -  7.0274- 4·7.0272·0.61012
2
=  
49.38 -  2438.4- 4·49.38·0.3722
2
=  
49.38 -  2364.9
2
= 0.6123

Площадь:
S =
h·c
2
=
0.6101·7.027
2
= 2.144

Радиус описанной окружности:
R =
c
2
=
7.027
2
= 3.514

Медиана:
Mc =
c
2
=
7.027
2
= 3.514

Радиус вписанной окружности:
r =
a+b-c
2
=
0.6123+7-7.027
2
= 0.2927

Периметр:
P = a+b+c
= 0.6123+7+7.027
= 14.64
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: