меню

Решение треугольника c катетом 105 и гипотенузой 386 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=105
b=371.44
c=386
15.8°
74.2°
S=19500.6
P=862.44
r=45.22
R=193
h=101.03
mc=193

Катет:
b =  c2 - a2
=  3862 - 1052
=  148996 - 11025
=  137971
= 371.44

Угол:
α° = arcsin
a
c
= arcsin
105
386
= 15.8°

Радиус описанной окружности:
R =
c
2
=
386
2
= 193

Медиана:
Mc =
c
2
=
386
2
= 193

Угол:
β° = arcsin
b
c
= arcsin
371.44
386
= 74.2°
или:
β° = 90°-α°
= 90°-15.8°
= 74.2°

Высота:
h =
ab
c
=
105·371.44
386
= 101.04
или:
h = b·sin(α°)
= 371.44·sin(15.8°)
= 371.44·0.2723
= 101.14
или:
h = a·cos(α°)
= 105·cos(15.8°)
= 105·0.9622
= 101.03

Площадь:
S =
ab
2
=
105·371.44
2
= 19500.6

Радиус вписанной окружности:
r =
a+b-c
2
=
105+371.44-386
2
= 45.22

Периметр:
P = a+b+c
= 105+371.44+386
= 862.44
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: