меню

Решение треугольника c катетом 0,5 и углом 45 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.5
b=0.5
c=0.7071
45°
45°
S=0.125
P=1.707
r=0.1465
R=0.3536
h=0.3536
mc=0.3536

Гипотенуза:
c =
a
sin(α°)
=
0.5
sin(45°)
=
0.5
0.7071
= 0.7071
или:
c =
a
cos(β°)
=
0.5
cos(45°)
=
0.5
0.7071
= 0.7071

Высота:
h = a·cos(α°)
= 0.5·cos(45°)
= 0.5·0.7071
= 0.3536
или:
h = a·sin(β°)
= 0.5·sin(45°)
= 0.5·0.7071
= 0.3536

Катет:
b = h·
c
a
= 0.3536·
0.7071
0.5
= 0.5001
или:
b =  c2 - a2
=  0.70712 - 0.52
=  0.5 - 0.25
=  0.25
= 0.5
или:
b = c·sin(β°)
= 0.7071·sin(45°)
= 0.7071·0.7071
= 0.5
или:
b = c·cos(α°)
= 0.7071·cos(45°)
= 0.7071·0.7071
= 0.5
или:
b =
h
sin(α°)
=
0.3536
sin(45°)
=
0.3536
0.7071
= 0.5001
или:
b =
h
cos(β°)
=
0.3536
cos(45°)
=
0.3536
0.7071
= 0.5001
или:
b =  
c2 +  c4- 4c2h2
2
=  
0.70712 +  0.70714- 4·0.70712·0.35362
2
=  
0.5 +  0.25- 4·0.5·0.125
2
=  
0.5 +  0
2
= 0.5

Площадь:
S =
h·c
2
=
0.3536·0.7071
2
= 0.125

Радиус описанной окружности:
R =
c
2
=
0.7071
2
= 0.3536

Медиана:
Mc =
c
2
=
0.7071
2
= 0.3536

Радиус вписанной окружности:
r =
a+b-c
2
=
0.5+0.5-0.7071
2
= 0.1465

Периметр:
P = a+b+c
= 0.5+0.5+0.7071
= 1.707
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: