меню

Решение треугольника c катетом 270 и углом 25 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=270
b=579.05
c=638.9
25°
65°
S=78169.4
P=1488
r=105.08
R=319.45
h=244.7
mc=319.45

Гипотенуза:
c =
a
sin(α°)
=
270
sin(25°)
=
270
0.4226
= 638.9

Угол:
β° = 90°-α°
= 90°-25°
= 65°

Высота:
h = a·cos(α°)
= 270·cos(25°)
= 270·0.9063
= 244.7

Катет:
b = h·
c
a
= 244.7·
638.9
270
= 579.03
или:
b =  c2 - a2
=  638.92 - 2702
=  408193.2 - 72900
=  335293.2
= 579.05
или:
b = c·sin(β°)
= 638.9·sin(65°)
= 638.9·0.9063
= 579.04
или:
b = c·cos(α°)
= 638.9·cos(25°)
= 638.9·0.9063
= 579.04
или:
b =
h
sin(α°)
=
244.7
sin(25°)
=
244.7
0.4226
= 579.03
или:
b =
h
cos(β°)
=
244.7
cos(65°)
=
244.7
0.4226
= 579.03
или:
b =  
c2 +  c4- 4c2h2
2
=  
638.92 +  638.94- 4·638.92·244.72
2
=  
408193.2 +  166621688526- 4·408193.2·59878.1
2
=  
408193.2 +  68854355530
2
= 579.05

Площадь:
S =
h·c
2
=
244.7·638.9
2
= 78169.4

Радиус описанной окружности:
R =
c
2
=
638.9
2
= 319.45

Медиана:
Mc =
c
2
=
638.9
2
= 319.45

Радиус вписанной окружности:
r =
a+b-c
2
=
270+579.05-638.9
2
= 105.08

Периметр:
P = a+b+c
= 270+579.05+638.9
= 1488
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: