меню

Решение треугольника c катетом 7005 и углом 22 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2830.2
b=7005
c=7555
22°
68°
S=9912538
P=17390.2
r=1140.1
R=3777.5
h=2624.1
mc=3777.5

Гипотенуза:
c =
b
cos(α°)
=
7005
cos(22°)
=
7005
0.9272
= 7555

Угол:
β° = 90°-α°
= 90°-22°
= 68°

Высота:
h = b·sin(α°)
= 7005·sin(22°)
= 7005·0.3746
= 2624.1

Катет:
a = h·
c
b
= 2624.1·
7555
7005
= 2830.1
или:
a =  c2 - b2
=  75552 - 70052
=  57078025 - 49070025
=  8008000
= 2829.8
или:
a = c·sin(α°)
= 7555·sin(22°)
= 7555·0.3746
= 2830.1
или:
a = c·cos(β°)
= 7555·cos(68°)
= 7555·0.3746
= 2830.1
или:
a =
h
cos(α°)
=
2624.1
cos(22°)
=
2624.1
0.9272
= 2830.1
или:
a =
h
sin(β°)
=
2624.1
sin(68°)
=
2624.1
0.9272
= 2830.1
или:
a =  
c2 -  c4- 4c2h2
2
=  
75552 -  75554- 4·75552·2624.12
2
=  
57078025 -  3.2579009379006E+15- 4·57078025·6885901
2
=  
57078025 -  1.6857664201985E+15
2
= 2830.2

Площадь:
S =
h·c
2
=
2624.1·7555
2
= 9912538

Радиус описанной окружности:
R =
c
2
=
7555
2
= 3777.5

Медиана:
Mc =
c
2
=
7555
2
= 3777.5

Радиус вписанной окружности:
r =
a+b-c
2
=
2830.2+7005-7555
2
= 1140.1

Периметр:
P = a+b+c
= 2830.2+7005+7555
= 17390.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: