Решение треугольника c катетом 0,5 и углом 9.26194444 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.08152
b=0.5
c=0.5066
9.26194444°
80.7°
S=0.02038
P=1.088
r=0.03746
R=0.2533
h=0.08045
mc=0.2533
Гипотенуза:
c =
b
cos(α°)
=
0.5
cos(9.26194444°)
=
0.5
0.987
= 0.5066
Угол:
β° = 90°-α°
= 90°-9.26194444°
= 80.7°
Высота:
h = b·sin(α°)
= 0.5·sin(9.26194444°)
= 0.5·0.1609
= 0.08045
Катет:
a = h·
c
b
= 0.08045·
0.5066
0.5
= 0.08151
или:
a = c2 - b2
= 0.50662 - 0.52
= 0.2566 - 0.25
= 0.006644
= 0.08151
или:
a = c·sin(α°)
= 0.5066·sin(9.26194444°)
= 0.5066·0.1609
= 0.08151
или:
a = c·cos(β°)
= 0.5066·cos(80.7°)
= 0.5066·0.1616
= 0.08187
или:
a =
h
cos(α°)
=
0.08045
cos(9.26194444°)
=
0.08045
0.987
= 0.08151
или:
a =
h
sin(β°)
=
0.08045
sin(80.7°)
=
0.08045
0.9869
= 0.08152
или:
a =
c2 - c4- 4c2h2
2
=
0.50662 - 0.50664- 4·0.50662·0.080452
2
=
0.2566 - 0.06584- 4·0.2566·0.006472
2
=
0.2566 - 0.0592
2
= 0.08152
Площадь:
S =
h·c
2
=
0.08045·0.5066
2
= 0.02038
Радиус описанной окружности:
R =
c
2
=
0.5066
2
= 0.2533
Медиана:
Mc =
c
2
=
0.5066
2
= 0.2533
Радиус вписанной окружности:
r =
a+b-c
2
=
0.08152+0.5-0.5066
2
= 0.03746
Периметр:
P = a+b+c
= 0.08152+0.5+0.5066
= 1.088
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: