меню

Решение треугольника c катетом 3 и углом 16 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.8601
b=3
c=3.121
16°
74°
S=1.29
P=6.981
r=0.3696
R=1.561
h=0.8268
mc=1.561

Гипотенуза:
c =
b
cos(α°)
=
3
cos(16°)
=
3
0.9613
= 3.121

Угол:
β° = 90°-α°
= 90°-16°
= 74°

Высота:
h = b·sin(α°)
= 3·sin(16°)
= 3·0.2756
= 0.8268

Катет:
a = h·
c
b
= 0.8268·
3.121
3
= 0.8601
или:
a =  c2 - b2
=  3.1212 - 32
=  9.741 - 9
=  0.7406
= 0.8606
или:
a = c·sin(α°)
= 3.121·sin(16°)
= 3.121·0.2756
= 0.8601
или:
a = c·cos(β°)
= 3.121·cos(74°)
= 3.121·0.2756
= 0.8601
или:
a =
h
cos(α°)
=
0.8268
cos(16°)
=
0.8268
0.9613
= 0.8601
или:
a =
h
sin(β°)
=
0.8268
sin(74°)
=
0.8268
0.9613
= 0.8601
или:
a =  
c2 -  c4- 4c2h2
2
=  
3.1212 -  3.1214- 4·3.1212·0.82682
2
=  
9.741 -  94.89- 4·9.741·0.6836
2
=  
9.741 -  68.25
2
= 0.8601

Площадь:
S =
h·c
2
=
0.8268·3.121
2
= 1.29

Радиус описанной окружности:
R =
c
2
=
3.121
2
= 1.561

Медиана:
Mc =
c
2
=
3.121
2
= 1.561

Радиус вписанной окружности:
r =
a+b-c
2
=
0.8601+3-3.121
2
= 0.3696

Периметр:
P = a+b+c
= 0.8601+3+3.121
= 6.981
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: