Решение треугольника c катетом 3 и углом 0,4 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.02357
b=3
c=3
0.4°
89.6°
S=0.03141
P=6.024
r=0.01178
R=1.5
h=0.02094
mc=1.5
Гипотенуза:
c =
b
cos(α°)
=
3
cos(0.4°)
=
3
1
= 3
Угол:
β° = 90°-α°
= 90°-0.4°
= 89.6°
Высота:
h = b·sin(α°)
= 3·sin(0.4°)
= 3·0.006981
= 0.02094
Катет:
a = h·
c
b
= 0.02094·
3
3
= 0.02094
или:
a = c2 - b2
= 32 - 32
= 9 - 9
= 0
= 0
или:
a = c·sin(α°)
= 3·sin(0.4°)
= 3·0.006981
= 0.02094
или:
a = c·cos(β°)
= 3·cos(89.6°)
= 3·0.006981
= 0.02094
или:
a =
h
cos(α°)
=
0.02094
cos(0.4°)
=
0.02094
1
= 0.02094
или:
a =
h
sin(β°)
=
0.02094
sin(89.6°)
=
0.02094
1
= 0.02094
или:
a =
c2 - c4- 4c2h2
2
=
32 - 34- 4·32·0.020942
2
=
9 - 81- 4·9·0.0004385
2
=
9 - 80.98
2
= 0.02357
Площадь:
S =
h·c
2
=
0.02094·3
2
= 0.03141
Радиус описанной окружности:
R =
c
2
=
3
2
= 1.5
Медиана:
Mc =
c
2
=
3
2
= 1.5
Радиус вписанной окружности:
r =
a+b-c
2
=
0.02357+3-3
2
= 0.01178
Периметр:
P = a+b+c
= 0.02357+3+3
= 6.024
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: