меню

Решение треугольника c катетом 300 и углом 11 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=58.31
b=300
c=305.62
11°
79°
S=8746.8
P=663.93
r=26.35
R=152.81
h=57.24
mc=152.81

Гипотенуза:
c =
b
cos(α°)
=
300
cos(11°)
=
300
0.9816
= 305.62

Угол:
β° = 90°-α°
= 90°-11°
= 79°

Высота:
h = b·sin(α°)
= 300·sin(11°)
= 300·0.1908
= 57.24

Катет:
a = h·
c
b
= 57.24·
305.62
300
= 58.31
или:
a =  c2 - b2
=  305.622 - 3002
=  93403.6 - 90000
=  3403.6
= 58.34
или:
a = c·sin(α°)
= 305.62·sin(11°)
= 305.62·0.1908
= 58.31
или:
a = c·cos(β°)
= 305.62·cos(79°)
= 305.62·0.1908
= 58.31
или:
a =
h
cos(α°)
=
57.24
cos(11°)
=
57.24
0.9816
= 58.31
или:
a =
h
sin(β°)
=
57.24
sin(79°)
=
57.24
0.9816
= 58.31
или:
a =  
c2 -  c4- 4c2h2
2
=  
305.622 -  305.624- 4·305.622·57.242
2
=  
93403.6 -  8724232493- 4·93403.6·3276.4
2
=  
93403.6 -  7500122273
2
= 58.31

Площадь:
S =
h·c
2
=
57.24·305.62
2
= 8746.8

Радиус описанной окружности:
R =
c
2
=
305.62
2
= 152.81

Медиана:
Mc =
c
2
=
305.62
2
= 152.81

Радиус вписанной окружности:
r =
a+b-c
2
=
58.31+300-305.62
2
= 26.35

Периметр:
P = a+b+c
= 58.31+300+305.62
= 663.93
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: