Решение треугольника c катетом 450 и углом 13 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=450
b=1948.7
c=2000
13°
77°
S=438480
P=4398.7
r=199.35
R=1000
h=438.48
mc=1000
Гипотенуза:
c =
a
sin(α°)
=
450
sin(13°)
=
450
0.225
= 2000
Угол:
β° = 90°-α°
= 90°-13°
= 77°
Высота:
h = a·cos(α°)
= 450·cos(13°)
= 450·0.9744
= 438.48
Катет:
b = h·
c
a
= 438.48·
2000
450
= 1948.8
или:
b = c2 - a2
= 20002 - 4502
= 4000000 - 202500
= 3797500
= 1948.7
или:
b = c·sin(β°)
= 2000·sin(77°)
= 2000·0.9744
= 1948.8
или:
b = c·cos(α°)
= 2000·cos(13°)
= 2000·0.9744
= 1948.8
или:
b =
h
sin(α°)
=
438.48
sin(13°)
=
438.48
0.225
= 1948.8
или:
b =
h
cos(β°)
=
438.48
cos(77°)
=
438.48
0.225
= 1948.8
или:
b =
c2 + c4- 4c2h2
2
=
20002 + 20004- 4·20002·438.482
2
=
4000000 + 16000000000000- 4·4000000·192264.7
2
=
4000000 + 12923764800000
2
= 1948.7
Площадь:
S =
h·c
2
=
438.48·2000
2
= 438480
Радиус описанной окружности:
R =
c
2
=
2000
2
= 1000
Медиана:
Mc =
c
2
=
2000
2
= 1000
Радиус вписанной окружности:
r =
a+b-c
2
=
450+1948.7-2000
2
= 199.35
Периметр:
P = a+b+c
= 450+1948.7+2000
= 4398.7
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: