Решение треугольника c катетом 63000 и углом 0,003 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=3.298
b=63000
c=63000
0.003°
90°
S=103918.5
P=126003.3
r=1.649
R=31500
h=3.299
mc=31500
Гипотенуза:
c =
b
cos(α°)
=
63000
cos(0.003°)
=
63000
1
= 63000
Угол:
β° = 90°-α°
= 90°-0.003°
= 90°
Высота:
h = b·sin(α°)
= 63000·sin(0.003°)
= 63000·5.236E-5
= 3.299
Катет:
a = h·
c
b
= 3.299·
63000
63000
= 3.299
или:
a = c2 - b2
= 630002 - 630002
= 3969000000 - 3969000000
= 0
= 0
или:
a = c·sin(α°)
= 63000·sin(0.003°)
= 63000·5.236E-5
= 3.299
или:
a = c·cos(β°)
= 63000·cos(90°)
= 63000·0
= 0
или:
a =
h
cos(α°)
=
3.299
cos(0.003°)
=
3.299
1
= 3.299
или:
a =
h
sin(β°)
=
3.299
sin(90°)
=
3.299
1
= 3.299
или:
a =
c2 - c4- 4c2h2
2
=
630002 - 630004- 4·630002·3.2992
2
=
3969000000 - 1.5752961E+19- 4·3969000000·10.88
2
=
3969000000 - 1.5752960827269E+19
2
= 3.298
Площадь:
S =
h·c
2
=
3.299·63000
2
= 103918.5
Радиус описанной окружности:
R =
c
2
=
63000
2
= 31500
Медиана:
Mc =
c
2
=
63000
2
= 31500
Радиус вписанной окружности:
r =
a+b-c
2
=
3.298+63000-63000
2
= 1.649
Периметр:
P = a+b+c
= 3.298+63000+63000
= 126003.3
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: