Решение треугольника c катетом 80 и углом 40 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=67.1
b=80
c=104.44
40°
50°
S=2685.2
P=251.54
r=21.33
R=52.22
h=51.42
mc=52.22
Гипотенуза:
c =
b
cos(α°)
=
80
cos(40°)
=
80
0.766
= 104.44
Угол:
β° = 90°-α°
= 90°-40°
= 50°
Высота:
h = b·sin(α°)
= 80·sin(40°)
= 80·0.6428
= 51.42
Катет:
a = h·
c
b
= 51.42·
104.44
80
= 67.13
или:
a = c2 - b2
= 104.442 - 802
= 10907.7 - 6400
= 4507.7
= 67.14
или:
a = c·sin(α°)
= 104.44·sin(40°)
= 104.44·0.6428
= 67.13
или:
a = c·cos(β°)
= 104.44·cos(50°)
= 104.44·0.6428
= 67.13
или:
a =
h
cos(α°)
=
51.42
cos(40°)
=
51.42
0.766
= 67.13
или:
a =
h
sin(β°)
=
51.42
sin(50°)
=
51.42
0.766
= 67.13
или:
a =
c2 - c4- 4c2h2
2
=
104.442 - 104.444- 4·104.442·51.422
2
=
10907.7 - 118977919- 4·10907.7·2644
2
=
10907.7 - 3618084
2
= 67.1
Площадь:
S =
h·c
2
=
51.42·104.44
2
= 2685.2
Радиус описанной окружности:
R =
c
2
=
104.44
2
= 52.22
Медиана:
Mc =
c
2
=
104.44
2
= 52.22
Радиус вписанной окружности:
r =
a+b-c
2
=
67.1+80-104.44
2
= 21.33
Периметр:
P = a+b+c
= 67.1+80+104.44
= 251.54
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: