меню

Решение треугольника c катетом 141 и гипотенузой 173 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=100.24
b=141
c=173
35.4°
54.6°
S=7066.9
P=414.24
r=34.12
R=86.5
h=81.71
mc=86.5

Катет:
a =  c2 - b2
=  1732 - 1412
=  29929 - 19881
=  10048
= 100.24

Угол:
β° = arcsin
b
c
= arcsin
141
173
= 54.6°

Радиус описанной окружности:
R =
c
2
=
173
2
= 86.5

Медиана:
Mc =
c
2
=
173
2
= 86.5

Угол:
α° = arcsin
a
c
= arcsin
100.24
173
= 35.4°
или:
α° = 90°-β°
= 90°-54.6°
= 35.4°

Высота:
h =
ab
c
=
100.24·141
173
= 81.7
или:
h = b·cos(β°)
= 141·cos(54.6°)
= 141·0.5793
= 81.68
или:
h = a·sin(β°)
= 100.24·sin(54.6°)
= 100.24·0.8151
= 81.71

Площадь:
S =
ab
2
=
100.24·141
2
= 7066.9

Радиус вписанной окружности:
r =
a+b-c
2
=
100.24+141-173
2
= 34.12

Периметр:
P = a+b+c
= 100.24+141+173
= 414.24
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: