Решение треугольника c катетом 8 и углом 17 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.446
b=8
c=8.366
17°
73°
S=9.784
P=18.81
r=1.04
R=4.183
h=2.339
mc=4.183
Гипотенуза:
c =
b
cos(α°)
=
8
cos(17°)
=
8
0.9563
= 8.366
Угол:
β° = 90°-α°
= 90°-17°
= 73°
Высота:
h = b·sin(α°)
= 8·sin(17°)
= 8·0.2924
= 2.339
Катет:
a = h·
c
b
= 2.339·
8.366
8
= 2.446
или:
a = c2 - b2
= 8.3662 - 82
= 69.99 - 64
= 5.99
= 2.447
или:
a = c·sin(α°)
= 8.366·sin(17°)
= 8.366·0.2924
= 2.446
или:
a = c·cos(β°)
= 8.366·cos(73°)
= 8.366·0.2924
= 2.446
или:
a =
h
cos(α°)
=
2.339
cos(17°)
=
2.339
0.9563
= 2.446
или:
a =
h
sin(β°)
=
2.339
sin(73°)
=
2.339
0.9563
= 2.446
или:
a =
c2 - c4- 4c2h2
2
=
8.3662 - 8.3664- 4·8.3662·2.3392
2
=
69.99 - 4898.6- 4·69.99·5.471
2
=
69.99 - 3366.9
2
= 2.446
Площадь:
S =
h·c
2
=
2.339·8.366
2
= 9.784
Радиус описанной окружности:
R =
c
2
=
8.366
2
= 4.183
Медиана:
Mc =
c
2
=
8.366
2
= 4.183
Радиус вписанной окружности:
r =
a+b-c
2
=
2.446+8-8.366
2
= 1.04
Периметр:
P = a+b+c
= 2.446+8+8.366
= 18.81
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: