Решение треугольника c катетом 250 и углом 30 и углом 60 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=250
b=433.02
c=500
30°
60°
S=54125
P=1183
r=91.51
R=250
h=216.5
mc=250
Гипотенуза:
c =
a
sin(α°)
=
250
sin(30°)
=
250
0.5
= 500
или:
c =
a
cos(β°)
=
250
cos(60°)
=
250
0.5
= 500
Высота:
h = a·cos(α°)
= 250·cos(30°)
= 250·0.866
= 216.5
или:
h = a·sin(β°)
= 250·sin(60°)
= 250·0.866
= 216.5
Катет:
b = h·
c
a
= 216.5·
500
250
= 433
или:
b = c2 - a2
= 5002 - 2502
= 250000 - 62500
= 187500
= 433.01
или:
b = c·sin(β°)
= 500·sin(60°)
= 500·0.866
= 433
или:
b = c·cos(α°)
= 500·cos(30°)
= 500·0.866
= 433
или:
b =
h
sin(α°)
=
216.5
sin(30°)
=
216.5
0.5
= 433
или:
b =
h
cos(β°)
=
216.5
cos(60°)
=
216.5
0.5
= 433
или:
b =
c2 + c4- 4c2h2
2
=
5002 + 5004- 4·5002·216.52
2
=
250000 + 62500000000- 4·250000·46872.3
2
=
250000 + 15627700000
2
= 433.02
Площадь:
S =
h·c
2
=
216.5·500
2
= 54125
Радиус описанной окружности:
R =
c
2
=
500
2
= 250
Медиана:
Mc =
c
2
=
500
2
= 250
Радиус вписанной окружности:
r =
a+b-c
2
=
250+433.02-500
2
= 91.51
Периметр:
P = a+b+c
= 250+433.02+500
= 1183
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: