меню

Решение треугольника c катетом 380 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=380
b=380
c=404.38
70°
20°
S=26276.6
P=1164.4
r=177.81
R=202.19
h=129.96
mc=202.19

Гипотенуза:
c =
a
cos(β°)
=
380
cos(20°)
=
380
0.9397
= 404.38

Угол:
α° = 90°-β°
= 90°-20°
= 70°

Высота:
h = a·sin(β°)
= 380·sin(20°)
= 380·0.342
= 129.96

Катет:
b = h·
c
a
= 129.96·
404.38
380
= 138.3
или:
b =  c2 - a2
=  404.382 - 3802
=  163523.2 - 144400
=  19123.2
= 138.29
или:
b = c·sin(β°)
= 404.38·sin(20°)
= 404.38·0.342
= 138.3
или:
b = c·cos(α°)
= 404.38·cos(70°)
= 404.38·0.342
= 138.3
или:
b =
h
sin(α°)
=
129.96
sin(70°)
=
129.96
0.9397
= 138.3
или:
b =
h
cos(β°)
=
129.96
cos(20°)
=
129.96
0.9397
= 138.3
или:
b =  
c2 +  c4- 4c2h2
2
=  
404.382 +  404.384- 4·404.382·129.962
2
=  
163523.2 +  26739836938- 4·163523.2·16889.6
2
=  
163523.2 +  15692471183
2
= 380

Площадь:
S =
h·c
2
=
129.96·404.38
2
= 26276.6

Радиус описанной окружности:
R =
c
2
=
404.38
2
= 202.19

Медиана:
Mc =
c
2
=
404.38
2
= 202.19

Радиус вписанной окружности:
r =
a+b-c
2
=
380+380-404.38
2
= 177.81

Периметр:
P = a+b+c
= 380+380+404.38
= 1164.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: