меню

Решение треугольника c гипотенузой 16.64 и углом 27 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=7.555
b=14.83
c=16.64
27°
63°
S=56.02
P=39.03
r=2.873
R=8.32
h=6.732
mc=8.32

Катет:
a = c·sin(α°)
= 16.64·sin(27°)
= 16.64·0.454
= 7.555

Катет:
b = c·cos(α°)
= 16.64·cos(27°)
= 16.64·0.891
= 14.83

Угол:
β° = 90°-α°
= 90°-27°
= 63°

Радиус описанной окружности:
R =
c
2
=
16.64
2
= 8.32

Медиана:
Mc =
c
2
=
16.64
2
= 8.32

Высота:
h =
ab
c
=
7.555·14.83
16.64
= 6.733
или:
h = b·sin(α°)
= 14.83·sin(27°)
= 14.83·0.454
= 6.733
или:
h = b·cos(β°)
= 14.83·cos(63°)
= 14.83·0.454
= 6.733
или:
h = a·cos(α°)
= 7.555·cos(27°)
= 7.555·0.891
= 6.732
или:
h = a·sin(β°)
= 7.555·sin(63°)
= 7.555·0.891
= 6.732

Площадь:
S =
ab
2
=
7.555·14.83
2
= 56.02

Радиус вписанной окружности:
r =
a+b-c
2
=
7.555+14.83-16.64
2
= 2.873

Периметр:
P = a+b+c
= 7.555+14.83+16.64
= 39.03
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: