Решение треугольника c катетом 600 и углом 0,5 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=5.237
b=600
c=600
0.5°
89.5°
S=1570.8
P=1205.2
r=2.618
R=300
h=5.236
mc=300
Гипотенуза:
c =
b
cos(α°)
=
600
cos(0.5°)
=
600
1
= 600
Угол:
β° = 90°-α°
= 90°-0.5°
= 89.5°
Высота:
h = b·sin(α°)
= 600·sin(0.5°)
= 600·0.008727
= 5.236
Катет:
a = h·
c
b
= 5.236·
600
600
= 5.236
или:
a = c2 - b2
= 6002 - 6002
= 360000 - 360000
= 0
= 0
или:
a = c·sin(α°)
= 600·sin(0.5°)
= 600·0.008727
= 5.236
или:
a = c·cos(β°)
= 600·cos(89.5°)
= 600·0.008727
= 5.236
или:
a =
h
cos(α°)
=
5.236
cos(0.5°)
=
5.236
1
= 5.236
или:
a =
h
sin(β°)
=
5.236
sin(89.5°)
=
5.236
1
= 5.236
или:
a =
c2 - c4- 4c2h2
2
=
6002 - 6004- 4·6002·5.2362
2
=
360000 - 129600000000- 4·360000·27.42
2
=
360000 - 129560515200
2
= 5.237
Площадь:
S =
h·c
2
=
5.236·600
2
= 1570.8
Радиус описанной окружности:
R =
c
2
=
600
2
= 300
Медиана:
Mc =
c
2
=
600
2
= 300
Радиус вписанной окружности:
r =
a+b-c
2
=
5.237+600-600
2
= 2.618
Периметр:
P = a+b+c
= 5.237+600+600
= 1205.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: