Решение треугольника c катетом 3.75 и углом 30 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.165
b=3.75
c=4.33
30°
60°
S=4.059
P=10.25
r=0.7925
R=2.165
h=1.875
mc=2.165
Гипотенуза:
c =
b
cos(α°)
=
3.75
cos(30°)
=
3.75
0.866
= 4.33
Угол:
β° = 90°-α°
= 90°-30°
= 60°
Высота:
h = b·sin(α°)
= 3.75·sin(30°)
= 3.75·0.5
= 1.875
Катет:
a = h·
c
b
= 1.875·
4.33
3.75
= 2.165
или:
a = c2 - b2
= 4.332 - 3.752
= 18.75 - 14.06
= 4.686
= 2.165
или:
a = c·sin(α°)
= 4.33·sin(30°)
= 4.33·0.5
= 2.165
или:
a = c·cos(β°)
= 4.33·cos(60°)
= 4.33·0.5
= 2.165
или:
a =
h
cos(α°)
=
1.875
cos(30°)
=
1.875
0.866
= 2.165
или:
a =
h
sin(β°)
=
1.875
sin(60°)
=
1.875
0.866
= 2.165
или:
a =
c2 - c4- 4c2h2
2
=
4.332 - 4.334- 4·4.332·1.8752
2
=
18.75 - 351.56- 4·18.75·3.516
2
=
18.75 - 87.86
2
= 2.165
Площадь:
S =
h·c
2
=
1.875·4.33
2
= 4.059
Радиус описанной окружности:
R =
c
2
=
4.33
2
= 2.165
Медиана:
Mc =
c
2
=
4.33
2
= 2.165
Радиус вписанной окружности:
r =
a+b-c
2
=
2.165+3.75-4.33
2
= 0.7925
Периметр:
P = a+b+c
= 2.165+3.75+4.33
= 10.25
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: