Решение треугольника c катетом 1 и углом 2 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.035
b=1
c=1.001
2°
88°
S=0.01747
P=2.036
r=0.017
R=0.5005
h=0.0349
mc=0.5005
Гипотенуза:
c =
b
cos(α°)
=
1
cos(2°)
=
1
0.9994
= 1.001
Угол:
β° = 90°-α°
= 90°-2°
= 88°
Высота:
h = b·sin(α°)
= 1·sin(2°)
= 1·0.0349
= 0.0349
Катет:
a = h·
c
b
= 0.0349·
1.001
1
= 0.03493
или:
a = c2 - b2
= 1.0012 - 12
= 1.002 - 1
= 0.002001
= 0.04473
или:
a = c·sin(α°)
= 1.001·sin(2°)
= 1.001·0.0349
= 0.03493
или:
a = c·cos(β°)
= 1.001·cos(88°)
= 1.001·0.0349
= 0.03493
или:
a =
h
cos(α°)
=
0.0349
cos(2°)
=
0.0349
0.9994
= 0.03492
или:
a =
h
sin(β°)
=
0.0349
sin(88°)
=
0.0349
0.9994
= 0.03492
или:
a =
c2 - c4- 4c2h2
2
=
1.0012 - 1.0014- 4·1.0012·0.03492
2
=
1.002 - 1.004- 4·1.002·0.001218
2
=
1.002 - 0.9991
2
= 0.035
Площадь:
S =
h·c
2
=
0.0349·1.001
2
= 0.01747
Радиус описанной окружности:
R =
c
2
=
1.001
2
= 0.5005
Медиана:
Mc =
c
2
=
1.001
2
= 0.5005
Радиус вписанной окружности:
r =
a+b-c
2
=
0.035+1-1.001
2
= 0.017
Периметр:
P = a+b+c
= 0.035+1+1.001
= 2.036
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: