Решение треугольника c катетом 4,8 и углом 12 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.02
b=4.8
c=4.907
12°
78°
S=2.448
P=10.73
r=0.4565
R=2.454
h=0.9979
mc=2.454
Гипотенуза:
c =
b
cos(α°)
=
4.8
cos(12°)
=
4.8
0.9781
= 4.907
Угол:
β° = 90°-α°
= 90°-12°
= 78°
Высота:
h = b·sin(α°)
= 4.8·sin(12°)
= 4.8·0.2079
= 0.9979
Катет:
a = h·
c
b
= 0.9979·
4.907
4.8
= 1.02
или:
a = c2 - b2
= 4.9072 - 4.82
= 24.08 - 23.04
= 1.039
= 1.019
или:
a = c·sin(α°)
= 4.907·sin(12°)
= 4.907·0.2079
= 1.02
или:
a = c·cos(β°)
= 4.907·cos(78°)
= 4.907·0.2079
= 1.02
или:
a =
h
cos(α°)
=
0.9979
cos(12°)
=
0.9979
0.9781
= 1.02
или:
a =
h
sin(β°)
=
0.9979
sin(78°)
=
0.9979
0.9781
= 1.02
или:
a =
c2 - c4- 4c2h2
2
=
4.9072 - 4.9074- 4·4.9072·0.99792
2
=
24.08 - 579.85- 4·24.08·0.9958
2
=
24.08 - 483.93
2
= 1.02
Площадь:
S =
h·c
2
=
0.9979·4.907
2
= 2.448
Радиус описанной окружности:
R =
c
2
=
4.907
2
= 2.454
Медиана:
Mc =
c
2
=
4.907
2
= 2.454
Радиус вписанной окружности:
r =
a+b-c
2
=
1.02+4.8-4.907
2
= 0.4565
Периметр:
P = a+b+c
= 1.02+4.8+4.907
= 10.73
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: