меню

Решение треугольника c катетом 0,95 и гипотенузой 10,5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.95
b=10.46
c=10.5
5.2°
84.8°
S=4.969
P=21.91
r=0.455
R=5.25
h=0.9461
mc=5.25

Катет:
b =  c2 - a2
=  10.52 - 0.952
=  110.25 - 0.9025
=  109.35
= 10.46

Угол:
α° = arcsin
a
c
= arcsin
0.95
10.5
= 5.2°

Радиус описанной окружности:
R =
c
2
=
10.5
2
= 5.25

Медиана:
Mc =
c
2
=
10.5
2
= 5.25

Угол:
β° = arcsin
b
c
= arcsin
10.46
10.5
= 85°
или:
β° = 90°-α°
= 90°-5.2°
= 84.8°

Высота:
h =
ab
c
=
0.95·10.46
10.5
= 0.9464
или:
h = b·sin(α°)
= 10.46·sin(5.2°)
= 10.46·0.09063
= 0.948
или:
h = a·cos(α°)
= 0.95·cos(5.2°)
= 0.95·0.9959
= 0.9461

Площадь:
S =
ab
2
=
0.95·10.46
2
= 4.969

Радиус вписанной окружности:
r =
a+b-c
2
=
0.95+10.46-10.5
2
= 0.455

Периметр:
P = a+b+c
= 0.95+10.46+10.5
= 21.91
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: