меню

Решение треугольника c катетом 21 и гипотенузой 250 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=249.12
b=21
c=250
85.2°
4.8°
S=2615.8
P=520.12
r=10.06
R=125
h=20.85
mc=125

Катет:
a =  c2 - b2
=  2502 - 212
=  62500 - 441
=  62059
= 249.12

Угол:
β° = arcsin
b
c
= arcsin
21
250
= 4.8°

Радиус описанной окружности:
R =
c
2
=
250
2
= 125

Медиана:
Mc =
c
2
=
250
2
= 125

Угол:
α° = arcsin
a
c
= arcsin
249.12
250
= 85.2°
или:
α° = 90°-β°
= 90°-4.8°
= 85.2°

Высота:
h =
ab
c
=
249.12·21
250
= 20.93
или:
h = b·cos(β°)
= 21·cos(4.8°)
= 21·0.9965
= 20.93
или:
h = a·sin(β°)
= 249.12·sin(4.8°)
= 249.12·0.08368
= 20.85

Площадь:
S =
ab
2
=
249.12·21
2
= 2615.8

Радиус вписанной окружности:
r =
a+b-c
2
=
249.12+21-250
2
= 10.06

Периметр:
P = a+b+c
= 249.12+21+250
= 520.12
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: