меню

Решение треугольника c катетом 6,7 и катетом 7,2 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=6.7
b=7.2
c=9.835
42.9°
47.1°
S=24.12
P=23.74
r=2.033
R=4.918
h=4.905
mc=4.918

Гипотенуза:
c =  a2 + b2
=  6.72 + 7.22
=  44.89 + 51.84
=  96.73
= 9.835

Площадь:
S =
ab
2
=
6.7·7.2
2
= 24.12

Угол:
α° = arcsin
a
c
= arcsin
6.7
9.835
= 42.9°

Угол:
β° = arcsin
b
c
= arcsin
7.2
9.835
= 47.1°

Высота:
h =
ab
c
=
6.7·7.2
9.835
= 4.905
или:
h =
2S
c
=
2 · 24.12
9.835
= 4.905

Радиус вписанной окружности:
r =
a+b-c
2
=
6.7+7.2-9.835
2
= 2.033

Радиус описанной окружности:
R =
c
2
=
9.835
2
= 4.918

Периметр:
P = a+b+c
= 6.7+7.2+9.835
= 23.74

Медиана:
Mc =
c
2
=
9.835
2
= 4.918
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: