меню

Решение треугольника c углом 32 и высотой 0,12 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.1415
b=0.2265
c=0.267
32°
58°
S=0.01602
P=0.635
r=0.0505
R=0.1335
h=0.12
mc=0.1335

Катет:
a =
h
cos(α°)
=
0.12
cos(32°)
=
0.12
0.848
= 0.1415

Катет:
b =
h
sin(α°)
=
0.12
sin(32°)
=
0.12
0.5299
= 0.2265

Угол:
β° = 90°-α°
= 90°-32°
= 58°

Гипотенуза:
c =  a2 + b2
=  0.14152 + 0.22652
=  0.02002 + 0.0513
=  0.07132
= 0.2671
или:
c =
a
sin(α°)
=
0.1415
sin(32°)
=
0.1415
0.5299
= 0.267
или:
c =
b
sin(β°)
=
0.2265
sin(58°)
=
0.2265
0.848
= 0.2671
или:
c =
b
cos(α°)
=
0.2265
cos(32°)
=
0.2265
0.848
= 0.2671
или:
c =
a
cos(β°)
=
0.1415
cos(58°)
=
0.1415
0.5299
= 0.267

Площадь:
S =
ab
2
=
0.1415·0.2265
2
= 0.01602

Радиус вписанной окружности:
r =
a+b-c
2
=
0.1415+0.2265-0.267
2
= 0.0505

Радиус описанной окружности:
R =
c
2
=
0.267
2
= 0.1335

Периметр:
P = a+b+c
= 0.1415+0.2265+0.267
= 0.635

Медиана:
Mc =
c
2
=
0.267
2
= 0.1335
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: