Решение треугольника c катетом 0,425 и углом 12 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=0.425
b=1.999
c=2.044
12°
78°
S=0.4248
P=4.468
r=0.19
R=1.022
h=0.4157
mc=1.022
Гипотенуза:
c =
a
sin(α°)
=
0.425
sin(12°)
=
0.425
0.2079
= 2.044
Угол:
β° = 90°-α°
= 90°-12°
= 78°
Высота:
h = a·cos(α°)
= 0.425·cos(12°)
= 0.425·0.9781
= 0.4157
Катет:
b = h·
c
a
= 0.4157·
2.044
0.425
= 1.999
или:
b = c2 - a2
= 2.0442 - 0.4252
= 4.178 - 0.1806
= 3.997
= 1.999
или:
b = c·sin(β°)
= 2.044·sin(78°)
= 2.044·0.9781
= 1.999
или:
b = c·cos(α°)
= 2.044·cos(12°)
= 2.044·0.9781
= 1.999
или:
b =
h
sin(α°)
=
0.4157
sin(12°)
=
0.4157
0.2079
= 2
или:
b =
h
cos(β°)
=
0.4157
cos(78°)
=
0.4157
0.2079
= 2
или:
b =
c2 + c4- 4c2h2
2
=
2.0442 + 2.0444- 4·2.0442·0.41572
2
=
4.178 + 17.46- 4·4.178·0.1728
2
=
4.178 + 14.57
2
= 1.999
Площадь:
S =
h·c
2
=
0.4157·2.044
2
= 0.4248
Радиус описанной окружности:
R =
c
2
=
2.044
2
= 1.022
Медиана:
Mc =
c
2
=
2.044
2
= 1.022
Радиус вписанной окружности:
r =
a+b-c
2
=
0.425+1.999-2.044
2
= 0.19
Периметр:
P = a+b+c
= 0.425+1.999+2.044
= 4.468
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: