меню

Решение треугольника c катетом 2500 и катетом 150488 и углом 2 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2500
b=150488
c=150578.3
88°
S=188110000
P=303566.3
r=1204.9
R=75289.2
h=2498.5
mc=75289.2

Гипотенуза:
c =  a2 + b2
=  25002 + 1504882
=  6250000 + 22646638144
=  22652888144
= 150508.8
или:
c =
a
sin(α°)
=
2500
sin(2°)
=
2500
0.0349
= 71633.2
или:
c =
b
cos(α°)
=
150488
cos(2°)
=
150488
0.9994
= 150578.3

Угол:
β° = 90°-α°
= 90°-2°
= 88°

Высота:
h = b·sin(α°)
= 150488·sin(2°)
= 150488·0.0349
= 5252
или:
h = a·cos(α°)
= 2500·cos(2°)
= 2500·0.9994
= 2498.5

Площадь:
S =
ab
2
=
2500·150488
2
= 188110000

Радиус вписанной окружности:
r =
a+b-c
2
=
2500+150488-150578.3
2
= 1204.9

Радиус описанной окружности:
R =
c
2
=
150578.3
2
= 75289.2

Периметр:
P = a+b+c
= 2500+150488+150578.3
= 303566.3

Медиана:
Mc =
c
2
=
150578.3
2
= 75289.2
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: