меню

Решение треугольника c катетом 255 и углом 65 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=255
b=255
c=281.36
65°
25°
S=15159.7
P=791.36
r=114.32
R=140.68
h=107.76
mc=140.68

Гипотенуза:
c =
a
sin(α°)
=
255
sin(65°)
=
255
0.9063
= 281.36

Угол:
β° = 90°-α°
= 90°-65°
= 25°

Высота:
h = a·cos(α°)
= 255·cos(65°)
= 255·0.4226
= 107.76

Катет:
b = h·
c
a
= 107.76·
281.36
255
= 118.9
или:
b =  c2 - a2
=  281.362 - 2552
=  79163.4 - 65025
=  14138.4
= 118.91
или:
b = c·sin(β°)
= 281.36·sin(25°)
= 281.36·0.4226
= 118.9
или:
b = c·cos(α°)
= 281.36·cos(65°)
= 281.36·0.4226
= 118.9
или:
b =
h
sin(α°)
=
107.76
sin(65°)
=
107.76
0.9063
= 118.9
или:
b =
h
cos(β°)
=
107.76
cos(25°)
=
107.76
0.9063
= 118.9
или:
b =  
c2 +  c4- 4c2h2
2
=  
281.362 +  281.364- 4·281.362·107.762
2
=  
79163.4 +  6266843900- 4·79163.4·11612.2
2
=  
79163.4 +  2589798966
2
= 255

Площадь:
S =
h·c
2
=
107.76·281.36
2
= 15159.7

Радиус описанной окружности:
R =
c
2
=
281.36
2
= 140.68

Медиана:
Mc =
c
2
=
281.36
2
= 140.68

Радиус вписанной окружности:
r =
a+b-c
2
=
255+255-281.36
2
= 114.32

Периметр:
P = a+b+c
= 255+255+281.36
= 791.36
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: