меню

Решение треугольника c катетом 220 и углом 0,651 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2.499
b=220
c=220.02
0.651°
89.3°
S=274.91
P=442.52
r=1.239
R=110.01
h=2.499
mc=110.01

Гипотенуза:
c =
b
cos(α°)
=
220
cos(0.651°)
=
220
0.9999
= 220.02

Угол:
β° = 90°-α°
= 90°-0.651°
= 89.3°

Высота:
h = b·sin(α°)
= 220·sin(0.651°)
= 220·0.01136
= 2.499

Катет:
a = h·
c
b
= 2.499·
220.02
220
= 2.499
или:
a =  c2 - b2
=  220.022 - 2202
=  48408.8 - 48400
=  8.8
= 2.966
или:
a = c·sin(α°)
= 220.02·sin(0.651°)
= 220.02·0.01136
= 2.499
или:
a = c·cos(β°)
= 220.02·cos(89.3°)
= 220.02·0.01222
= 2.689
или:
a =
h
cos(α°)
=
2.499
cos(0.651°)
=
2.499
0.9999
= 2.499
или:
a =
h
sin(β°)
=
2.499
sin(89.3°)
=
2.499
0.9999
= 2.499
или:
a =  
c2 -  c4- 4c2h2
2
=  
220.022 -  220.024- 4·220.022·2.4992
2
=  
48408.8 -  2343411917- 4·48408.8·6.245
2
=  
48408.8 -  2342202665
2
= 2.499

Площадь:
S =
h·c
2
=
2.499·220.02
2
= 274.91

Радиус описанной окружности:
R =
c
2
=
220.02
2
= 110.01

Медиана:
Mc =
c
2
=
220.02
2
= 110.01

Радиус вписанной окружности:
r =
a+b-c
2
=
2.499+220-220.02
2
= 1.239

Периметр:
P = a+b+c
= 2.499+220+220.02
= 442.52
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: