Решение треугольника c катетом 6,82 и углом 22 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=2.756
b=6.82
c=7.355
22°
68°
S=9.396
P=16.93
r=1.111
R=3.678
h=2.555
mc=3.678
Гипотенуза:
c =
b
cos(α°)
=
6.82
cos(22°)
=
6.82
0.9272
= 7.355
Угол:
β° = 90°-α°
= 90°-22°
= 68°
Высота:
h = b·sin(α°)
= 6.82·sin(22°)
= 6.82·0.3746
= 2.555
Катет:
a = h·
c
b
= 2.555·
7.355
6.82
= 2.755
или:
a = c2 - b2
= 7.3552 - 6.822
= 54.1 - 46.51
= 7.584
= 2.754
или:
a = c·sin(α°)
= 7.355·sin(22°)
= 7.355·0.3746
= 2.755
или:
a = c·cos(β°)
= 7.355·cos(68°)
= 7.355·0.3746
= 2.755
или:
a =
h
cos(α°)
=
2.555
cos(22°)
=
2.555
0.9272
= 2.756
или:
a =
h
sin(β°)
=
2.555
sin(68°)
=
2.555
0.9272
= 2.756
или:
a =
c2 - c4- 4c2h2
2
=
7.3552 - 7.3554- 4·7.3552·2.5552
2
=
54.1 - 2926.8- 4·54.1·6.528
2
=
54.1 - 1514.1
2
= 2.756
Площадь:
S =
h·c
2
=
2.555·7.355
2
= 9.396
Радиус описанной окружности:
R =
c
2
=
7.355
2
= 3.678
Медиана:
Mc =
c
2
=
7.355
2
= 3.678
Радиус вписанной окружности:
r =
a+b-c
2
=
2.756+6.82-7.355
2
= 1.111
Периметр:
P = a+b+c
= 2.756+6.82+7.355
= 16.93
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: