Решение треугольника c катетом 7.6 и углом 13 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1.755
b=7.6
c=7.8
13°
77°
S=6.669
P=17.16
r=0.7775
R=3.9
h=1.71
mc=3.9
Гипотенуза:
c =
b
cos(α°)
=
7.6
cos(13°)
=
7.6
0.9744
= 7.8
Угол:
β° = 90°-α°
= 90°-13°
= 77°
Высота:
h = b·sin(α°)
= 7.6·sin(13°)
= 7.6·0.225
= 1.71
Катет:
a = h·
c
b
= 1.71·
7.8
7.6
= 1.755
или:
a = c2 - b2
= 7.82 - 7.62
= 60.84 - 57.76
= 3.08
= 1.755
или:
a = c·sin(α°)
= 7.8·sin(13°)
= 7.8·0.225
= 1.755
или:
a = c·cos(β°)
= 7.8·cos(77°)
= 7.8·0.225
= 1.755
или:
a =
h
cos(α°)
=
1.71
cos(13°)
=
1.71
0.9744
= 1.755
или:
a =
h
sin(β°)
=
1.71
sin(77°)
=
1.71
0.9744
= 1.755
или:
a =
c2 - c4- 4c2h2
2
=
7.82 - 7.84- 4·7.82·1.712
2
=
60.84 - 3701.5- 4·60.84·2.924
2
=
60.84 - 2989.9
2
= 1.755
Площадь:
S =
h·c
2
=
1.71·7.8
2
= 6.669
Радиус описанной окружности:
R =
c
2
=
7.8
2
= 3.9
Медиана:
Mc =
c
2
=
7.8
2
= 3.9
Радиус вписанной окружности:
r =
a+b-c
2
=
1.755+7.6-7.8
2
= 0.7775
Периметр:
P = a+b+c
= 1.755+7.6+7.8
= 17.16
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: